Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Share [2032]

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Share [2032]

Segments - by Lift Technology (Multirotor, Vectored Thrust, Lift Plus Cruise), by Mode Of Operation (Autonomous, Piloted, Semi-autonomous), by Range (0-200 km, 200-500 km, Above 500 km), by Propulsion Type (BatteryElectric, Hybrid Electric, Hydrogen Electric), by Application (Air Taxis, Delivery Drones, Air Ambulance& Medical Emergency, Private Transport, Surveillance, Cargo Transport, Special Mission, Last Mile Delivery, Others)

https://growthmarketreports.com/Raksha
Author : Raksha Sharma
https://growthmarketreports.com/Indranil
Fact-checked by : Indranil Bose
https://growthmarketreports.com/Shruti
Editor : Shruti Bhat

Upcoming | Report ID :AD-6927 | 4.2 Rating | 85 Reviews | 304 Pages | Format : PDF Excel PPT

Report Description


Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Outlook 2032

The global electric vertical take-off and landing (eVTOL) aircraft market size was USD 1.2 Billion in 2023 and is likely to reach USD 24.8 Billion by 2032, expanding at a CAGR of 52.0% during 2024–2032. The market growth is attributed to the advancements in battery technology.

The electric vertical take-off and landing (eVTOL) aircraft market represents a transformative advancement in aviation technology, focusing on sustainable and efficient urban air mobility. eVTOL aircraft are designed to operate with minimal noise, and zero emissions, and vertically take off and land in densely populated urban areas, circumventing traditional airport infrastructure.

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Outlook

This market includes a variety of aircraft designs and technologies, ranging from multirotor vehicles to those employing vectored thrust or lift-plus cruise technologies. As congestion continues to plague traditional roadways, eVTOLs offer an innovative solution by utilizing underexploited airspace for passenger and cargo transport.

The eVTOL aircraft market is expected to witness significant technological advancements that enhance the capabilities, efficiency, and safety of these aerial vehicles. Key areas of focus likely include advancements in battery technology, such as higher energy density and faster charging capabilities, which are crucial for extending the range and reducing turnaround times of eVTOLs.

Autonomous flight technology is expected to evolve, with improvements in AI algorithms and sensor technologies enhancing the reliability and safety of unmanned flights. Additionally, advancements in materials science are anticipated to lead to lighter and more durable airframes that support the rigorous demands of frequent vertical take-offs and landings.Integration of advanced communication systems for better traffic management and real-time data exchange between eVTOLs and control centers is critical.

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Dynamics

Major Drivers

The rapid pace of global urbanization coupled with increasing traffic congestion in major cities around the world drive the eVTOL aircraft market. As urban populations continue to grow, traditional ground-based transportation systems are becoming increasingly strained, leading to longer commute times and higher levels of pollution.

eVTOL aircraft offer a promising solution by utilizing the underused airspace above cities to transport people and goods efficiently. The ability of eVTOLs to bypass road traffic and reduce transit times significantly is a compelling advantage, making them an attractive alternative for urban mobility. This potential has spurred interest from city planners and transport authorities seeking sustainable solutions to urban transport challenges, thereby driving the development and adoption of eVTOL technologies.


Technological advancements are a critical driver for the eVTOL market, enabling these aircraft to become safer, more efficient, and economically viable. Significant progress in battery technology has extended the range and reduced the weight of eVTOLs, making them practical for a wider range of applications. Similarly, advancements in autonomous flight systems and artificial intelligence have improved the operational safety and efficiency of eVTOLs, allowing for semi-autonomous or fully autonomous operations.

These technological developmentsenhance the performance of eVTOL aircraft and help reduce operational costs, thereby making the economics of eVTOL services favorable for companies and consumers alike. As these technologies continue to evolve, they further lower barriers to entry and accelerate market growth.


Environmental concerns regarding pollution and noise are increasingly influencing transportation choices, driving demand for cleaner and quieter alternatives. eVTOL aircraft, which typically operate on electric or hybrid propulsion systems, offer a solution to these environmental challenges by significantly reducing emissions and noise compared to traditional aircraft and helicopters.

This environmental advantage aligns with global efforts to combat climate change and is driving regulatory bodies to support the development and integration of eVTOL systems. Many governments are facilitating trials, creating urban air mobility frameworks, and offering incentives for green transportation solutions. This regulatory support legitimizes the eVTOL industry and encourages investment and innovation in the sector, further propelling market growth.

Existing Restraints

Navigating the complex regulatory and certification landscapehinders the eVTOL aircraft market. As eVTOLs introduce a new category of aircraft that combines elements of aviation and urban mobility, they require new standards and regulations to ensure safety and efficiency. Regulatory bodies such as the Federal Aviation Administration (FAA) in the United States and the European Aviation Safety Agency (EASA) in Europe are still in the process of developing and finalizing these frameworks.

The certification process for eVTOLs is both time-consuming and costly, requiring extensive testing and validation to meet stringent safety standards. This delays market entry and increases development costs, posing a substantial barrier for new and existing companies in the industry.


Increasing technological limitations hamper the market. Despite rapid advancements, there are still significant technological limitations that restrict the broader deployment and scalability of eVTOLs. Battery technology while improving, still does not offer the energy density required for long-range flights or heavier payloads without compromising performance.

This limitation affects the operational viability of eVTOLs, particularly for longer or more demanding routes. Additionally, the integration of autonomous flight technology, which is crucial for achieving high levels of operational efficiency and safety, remains a challenge due to issues related to sensor reliability, data processing, and decision-making under varied and unpredictable urban conditions.

Emerging Opportunities

The expansion intourban air mobility (UAM) presents a significant opportunity for the eVTOL aircraft market. As cities worldwide continue to grow and face increasing traffic congestion, eVTOLs offer a novel solution that complements existing transportation systems. By providing a fast, efficient, and environmentally friendly alternative to ground transport, eVTOLs have the potential to drastically reduce urban commute times and enhance the quality of life for city dwellers.

The integration of eVTOL services into public transportation networks transforms urban landscapes by reducing road traffic, lowering emissions, and contributing to the development of smart cities. This shift opens up substantial market opportunities for eVTOL manufacturers and operators and for infrastructure developers tasked with building vertiports and other supporting facilities.


The rapid advancement in autonomous technologies is another significant opportunity for themarket. Autonomous flight systems reduce the need for pilots, which significantly lowers operational costs and increases safety by removing the potential for human error. The development of sophisticated sensors, machine learning algorithms, and data analytics enhances the capabilities of eVTOLs to operate in complex urban environments autonomously.

As these technologies mature, they enable widespread and routine use of eVTOLs for a variety of applications, including passenger transport, cargo delivery, and emergency services. The progress in autonomous technology fuels the growth of the market and helps in gaining regulatory and public trust by demonstrating consistent safety and reliability.


The market is ripe for diversification into multiple applications beyond passenger transport. Delivery drones represent a rapidly expanding sector that leverages eVTOL technology for faster and more efficient parcel deliveries, especially in congested urban areas. Additionally, eVTOLsplay a crucial role in emergency medical services by providing rapid response capabilities and access to hard-to-reach areas during critical situations.

Other potential applications include aerial surveillance, agricultural monitoring, and environmental monitoring, each offering unique market opportunities. By diversifying their applications, eVTOL c
ompanies tap into new revenue streams and reduce their dependency on the passenger transport market, which faces slower regulatory progress and public acceptance. This strategic expansion into various sectors broadens the potential customer base and enhances the overall resilience and growth prospects of the eVTOL industry.

Scope of the Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Report

The market report includes an assessment of the market trends, segments, and regional markets. Overview and dynamics are included in the report.

Attributes

Details

Report Title

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market - Global Industry Analysis, Growth, Share, Size, Trends, and Forecast

Base Year

2023

Historic Data

2017 -2022

Forecast Period

2024–2032

Segmentation

Lift Technology (Multirotor, Vectored Thrust, and Lift Plus Cruise), Mode of Operation (Autonomous, Piloted, and Semi-autonomous), Range (0-200 km, 200-500 km, and Above 500 km),Propulsion Type (BatteryElectric, Hybrid Electric, and Hydrogen Electric), Application (Air Taxis, Delivery Drones, Air Ambulance& Medical Emergency, Private Transport, Surveillance, Cargo Transport, Special Mission, Last Mile Delivery, and Others)

Regional Scope

Asia Pacific, North America, Latin America, Europe, and Middle East & Africa

Report Coverage

Company Share, Market Analysis and Size, Competitive Landscape, Growth Factors, MarketTrends, and Revenue Forecast

Key Players Covered in the Report

Joby Aviation, Volocopter, Lilium, EHang, and Archer Aviation, among others.

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Segment Insights

Lift Technology Segment Analysis

The multirotor segment is one of the most prominent in the eVTOL aircraft market, primarily due to its simplicity and proven technology, which are widely adopted in drone technology. Multirotor eVTOLs are equipped with multiple rotors that provide lift and stability, making them highly maneuverable and capable of vertical take-off and landing in tight spaces.

This technology is particularly favored for applications in urban environments where space is limited and precision maneuvering is crucial. The market demand for multirotor eVTOLs is driven by their use in applications such as aerial photography, surveillance, and short-distance urban air mobility, such as air taxis.

The scalability of multirotor technology from small unmanned aerial vehicles to larger manned platforms has facilitated its rapid development and deployment, making it a dominant technology in the current eVTOL market landscape.


Vectored thrust technology in eVTOLs involves the use of thrusters whose direction are dynamically changed to control the aircraft's lift and propulsion. This technology allows forefficient flight dynamics and control, making it suitable for higher-speed applications and longer distances compared to multirotor eVTOLs.

The vectored thrust eVTOLs are particularly advantageous in scenarios where speed and efficiency are paramount, such as emergency response and inter-city travel. The ability to transition from vertical lift to forward propulsion without the need for separate systems gives vectored thrust eVTOLs a significant edge in performance.

This segment of the market is witnessing substantial growth due to these operational efficiencies, which are highly valued for commercial and logistical applications. The development of vectored thrust eVTOLs is seeing significant investment from both private and governmental entities aiming to capitalize on their potential to transform medium-range transportation.

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Technology

Mode of Operation Segment Analysis

Autonomous eVTOLs operate without a pilot on board, relying entirely on computer systems and sensors to navigate and manage flight operations. This segment is particularly appealing due to its potential to maximize operational efficiency and reduce human error, making it ideal for applications such as cargo delivery and emergency response where speed and reliability are critical.

The market for autonomous eVTOLs is expanding rapidly as advancements in artificial intelligence and
machine learning continue to enhance their capabilities. Investment in this segment is robust, as stakeholders anticipate significant cost savings and increased safety for fully automated operations. The development of autonomous eVTOLs aligns with the broader trends toward automation in transportation, positioning this segment for substantial growth as regulatory bodies continue to evolve standards that facilitate wider adoption.


Piloted eVTOLs require a human pilot to be on board to control the aircraft. This segment currently dominates the market, particularly for passenger transport applications such as air taxis, where passenger confidence in manned operations plays a critical role. Piloted eVTOLs serve as a crucial transitional technology by leveraging existing aviation infrastructure and expertise while introducing the benefits of VTOL capabilities and electric propulsion.

Market growth in this segment is driven by the increasing demand for urban air mobility solutions in congested cities and the comparative ease of obtaining regulatory approval for manned aircraft. Additionally, piloted eVTOLs are seen as a stepping stone to advanced autonomous systems, providing an opportunity for pilots, regulators, and the public to become accustomed to this new form of mobility.

Range Segment Analysis

The 0-200 km segment is one of the most prominent in the eVTOL aircraft market, primarily as it aligns well with the typical use cases of urban air mobility and short-haul trips. This range is ideal for intra-city transportation, air taxis, and logistical applications such as delivery drones within metropolitan areas. The market demand for eVTOLs in this range is driven by the growing need to bypass congested ground traffic and reduce travel times for short distances.

Additionally, the technological requirements for achieving this range are less demanding compared to longer-range eVTOLs, facilitating quicker development cycles and lower operational costs. This segment benefits from a higher rate of regulatory approval due to the lower risk associated with shorter-distance flights and the extensive application of these aircraft in controlled urban environments.


The 200-500 km range segment caters to a growing niche in the market that seeks to bridge the gap between short urban hops and longer regional travel. This range is particularly suitable for applications such as inter-city travel or connecting suburban areas with urban centers. The development of eVTOLs that cover this distance is driven by advancements in battery technology and hybrid propulsion systems, which allow for extended range without compromising on performance.

Market interest in this segment is increasing as it promises to offer a viable alternative to traditional regional air travel and high-speed ground transport, providing a faster, more efficient means of covering medium distances. The potential to significantly cut travel times while avoiding major airport hubs makes eVTOLs in this range segment particularly attractive for business travel and high-priority logistics.

Propulsion Type Segment Analysis

Battery electric propulsion is currently one of the most dominant segments in the eVTOL aircraft market, primarily due to its simplicity, high efficiency, and alignment with global sustainability goals. Battery electric eVTOLs operate using electric motors powered by onboard batteries, offering a zero-emission solution to urban air mobility.

This market segment has gained significant traction as advancements in battery technology continue to improve energy density, reduce weight, and enhance safety. The appeal of battery electric eVTOLs is particularly strong in urban environments where reducing pollution and noise is a priority. Moreover, the lower operational and maintenance costs associated with electric propulsion compared to traditional fossil fuel systems make this segment highly attractive for commercial operators and investors.

The development and market adoption of battery electric eVTOLs is further supported by increasing regulatory incentives aimed at promoting cleaner transportation technologies.


The hybrid electric segment represents a critical bridge between fully electric systems and traditional combustion engines, offering extended range and improved reliability without fully relying on battery technology. Hybrid electric eVTOLs use a combination of electric motors and combustion engines, where the combustion engine either directly powers the rotors or generates electricity to recharge the batteries.

This dual approach allows for longer flight durations and quicker refueling times, making hybrid systems ideal for longer-range missions and heavier payload capacities that are currently beyond the reach of purely battery-powered eVTOLs.

The market for hybrid electric eVTOLs is expanding as they provide a practical solution for many current logistical challenges in air transport, combining the benefits of electric propulsion with the extended range capabilities of conventional fuels. This segment is particularly appealing to commercial sectors that require the versatility and endurance that hybrid systems offer, such as cargo transport and regional passenger services.

Application Segment Analysis

The air taxi segment is one of the most prominent and rapidly growing in the eVTOL aircraft market. This application aims to revolutionize urban mobility by providing a fast, efficient, and environmentally friendly alternative to traditional road transport. Air taxis are designed to carry a small number of passengers over relatively short distances within urban and suburban areas, significantly reducing commute times and helping to alleviate traffic congestion.

The market demand for air taxis is driven by increasing urbanization and the need for efficient transportation solutions in densely populated cities. Several high-profile companies and startups are investing heavily in this segment, with numerous prototypes in testing and some nearing commercial deployment. Regulatory bodies in various countries are beginning to develop frameworks to accommodate these vehicles, which is expected to further accelerate market growth and public adoption.


The delivery drones segment is another key area of growth within the market, particularly driven by the e-commerce boom and the increasing demand for faster delivery services. These drones are used for transporting goods and packages autonomously over varying distances, offering a quick and cost-effective solution to last-mile delivery challenges.

The use of eVTOL aircraft for delivery purposes speeds up the shipping process and reduces the carbon footprint associated with traditional vehicle deliveries. Major e-commerce giants and logistics companies are exploring and integrating eVTOL technology to enhance their distribution networks, especially in urban areas where navigating traffic significantly delays ground-based delivery methods. The ongoing advancements in autonomous flight technology and GPS accuracy are crucial enablers for this segment, making it one of the most dynamic and transformative applications of eVTOL aircraft.

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Application

Regional Analysis

The Asia Pacific region is emerging as a significant player in the eVTOL aircraft market, driven by rapid urbanization and the increasing need for innovative transportation solutions in densely populated cities. Countries such as China and Japan are at the forefront, investing heavily in the development and testing of eVTOL technologies.

The region benefits from a strong manufacturing base, technological prowess, and governmental support in terms of regulations and infrastructure development. Additionally, the growing middle class in countries such as India and Southeast Asian nations is expected to boost demand for personal and commercial air mobility solutions, making the Asia Pacific a hotbed for market growth in the coming years.


North America, particularly the US, holds a dominant position in the global eVTOL aircraft market. This region is characterized by the presence of major eVTOL developers and manufacturers, robust investment in research and development, and a proactive regulatory environment facilitated by the Federal Aviation Administration (FAA).

The U.S. market is seeing increasing partnerships between eVTOL companies and urban centers to pilot air taxi services, reflecting a strong push toward integrating eVTOLs into the urban transportation infrastructure. Canada is showing significant interest, with initiatives to test and deploy eVTOL systems in its airspace, focusing on both passenger mobility and cargo delivery.


Europe is a key region in the global eVTOL aircraft market, with a strong focus on sustainability and innovation. The European Union is actively supporting eVTOL development through various regulatory initiatives and research funding aimed at integrating these aircraft into the continental transportation network while minimizing environmental impact.

Countries such as Germany, France, and the UK are leading in eVTOL technology trials, driven by collaborations between governments, aerospace companies, and technology startups. The presence of established aerospace manufacturers in Europe aids in the advanced development and testing of eVTOL systems, positioning the region as a leader in sustainable air mobility solutions.

Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Region

Segments

The electric vertical take-off and landing (eVTOL) aircraft market has been segmented on the basis of

Lift Technology

  • Multirotor
  • Vectored Thrust
  • Lift Plus Cruise

Mode of Operation

  • Autonomous
  • Piloted
  • Semi-autonomous

Range

  • 0-200 km
  • 200-500 km
  • Above 500 km

Propulsion Type

  • Battery Electric
  • Hybrid Electric
  • Hydrogen Electric

Application

  • Air Taxis
  • Delivery Drones
  • Air Ambulance & Medical Emergency
  • Private Transport
  • Surveillance
  • Cargo Transport
  • Special Mission
  • Last Mile Delivery
  • Others

Region

  • Asia Pacific
  • North America
  • Latin America
  • Europe
  • Middle East & Africa

Key Players

  • Joby Aviation
  • Volocopter
  • Lilium,
  • EHang
  • Archer Aviation
  • among others

Competitive Landscape

The eVTOL aircraft market features a mix of established aerospace giants and innovative startups, each contributing to the dynamic growth of the industry. Key players include Joby Aviation, Volocopter, Lilium, EHang, and Archer Aviation, among others. These companies are at the forefront due to their advanced technological capabilities, strategic partnerships, and significant funding rounds.

Joby Aviation and Volocopter have been notable for their extensive test flights and engagement with regulatory bodies, positioning them as leaders in the sector. Market share among these companies is continually evolving as each entity progresses in technology development, regulatory approvals, and commercial partnerships. The competition is intense, with each player aiming to capitalize on the first-mover advantage in various segments of the market, such as air taxis or cargo delivery.

  • In July 2023, Archer Aviation, Inc. expanded its partnership with the Department of Defense (DoD) through new contracts with the U.S. Air Force, totaling up to USD 142 million.The expanded partnership encompasses the delivery of up to six Midnight aircraft, the sharing of further flight test data and certification-related reports, pilot training programs, and the establishment of maintenance and repair operations. Through these initiatives, Archer is set to enhance the national defense capabilities of the United States.

  • In June 2023, Volocopter signed an agreement with Safran Electrical & Power on creating a new generation power train for electric vertical takeoff and landing (eVTOL) aircraft. This collaboration focuses on exploring commercial and engineering partnerships, particularly concerning the complete electric powertrain, which includes the electrical propulsion system (EPS), power distribution system, and battery units,along with broader engineering services.

    Electric Vertical Take-Off and Landing (eVTOL) Aircraft Market Keyplayers

Table Of Content

Chapter 1 Executive Summary
Chapter 2 Assumptions and Acronyms Used
Chapter 3 Research Methodology
Chapter 4 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Overview
   4.1 Introduction
      4.1.1 Market Taxonomy
      4.1.2 Market Definition
      4.1.3 Macro-Economic Factors Impacting the Market Growth
   4.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Dynamics
      4.2.1 Market Drivers
      4.2.2 Market Restraints
      4.2.3 Market Opportunity
   4.3 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market - Supply Chain Analysis
      4.3.1 List of Key Suppliers
      4.3.2 List of Key Distributors
      4.3.3 List of Key Consumers
   4.4 Key Forces Shaping the Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market
      4.4.1 Bargaining Power of Suppliers
      4.4.2 Bargaining Power of Buyers
      4.4.3 Threat of Substitution
      4.4.4 Threat of New Entrants
      4.4.5 Competitive Rivalry
   4.5 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size & Forecast, 2023-2032
      4.5.1 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size and Y-o-Y Growth
      4.5.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Absolute $ Opportunity

Chapter 5 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Analysis and Forecast By Lift Technology
   5.1 Introduction
      5.1.1 Key Market Trends & Growth Opportunities By Lift Technology
      5.1.2 Basis Point Share (BPS) Analysis By Lift Technology
      5.1.3 Absolute $ Opportunity Assessment By Lift Technology
   5.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Lift Technology
      5.2.1 Multirotor
      5.2.2 Vectored Thrust
      5.2.3 Lift Plus Cruise
   5.3 Market Attractiveness Analysis By Lift Technology

Chapter 6 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Analysis and Forecast By Mode Of Operation
   6.1 Introduction
      6.1.1 Key Market Trends & Growth Opportunities By Mode Of Operation
      6.1.2 Basis Point Share (BPS) Analysis By Mode Of Operation
      6.1.3 Absolute $ Opportunity Assessment By Mode Of Operation
   6.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Mode Of Operation
      6.2.1 Autonomous
      6.2.2 Piloted
      6.2.3 Semi-autonomous
   6.3 Market Attractiveness Analysis By Mode Of Operation

Chapter 7 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Analysis and Forecast By Range
   7.1 Introduction
      7.1.1 Key Market Trends & Growth Opportunities By Range
      7.1.2 Basis Point Share (BPS) Analysis By Range
      7.1.3 Absolute $ Opportunity Assessment By Range
   7.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Range
      7.2.1 0-200 km
      7.2.2 200-500 km
      7.2.3 Above 500 km
   7.3 Market Attractiveness Analysis By Range

Chapter 8 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Analysis and Forecast By Propulsion Type
   8.1 Introduction
      8.1.1 Key Market Trends & Growth Opportunities By Propulsion Type
      8.1.2 Basis Point Share (BPS) Analysis By Propulsion Type
      8.1.3 Absolute $ Opportunity Assessment By Propulsion Type
   8.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Propulsion Type
      8.2.1 BatteryElectric
      8.2.2 Hybrid Electric
      8.2.3 Hydrogen Electric
   8.3 Market Attractiveness Analysis By Propulsion Type

Chapter 9 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Analysis and Forecast By Application
   9.1 Introduction
      9.1.1 Key Market Trends & Growth Opportunities By Application
      9.1.2 Basis Point Share (BPS) Analysis By Application
      9.1.3 Absolute $ Opportunity Assessment By Application
   9.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Application
      9.2.1 Air Taxis
      9.2.2 Delivery Drones
      9.2.3 Air Ambulance& Medical Emergency
      9.2.4 Private Transport
      9.2.5 Surveillance
      9.2.6 Cargo Transport
      9.2.7 Special Mission
      9.2.8 Last Mile Delivery
      9.2.9 Others
   9.3 Market Attractiveness Analysis By Application

Chapter 10 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Analysis and Forecast by Region
   10.1 Introduction
      10.1.1 Key Market Trends & Growth Opportunities By Region
      10.1.2 Basis Point Share (BPS) Analysis By Region
      10.1.3 Absolute $ Opportunity Assessment By Region
   10.2 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Region
      10.2.1 North America
      10.2.2 Europe
      10.2.3 Asia Pacific
      10.2.4 Latin America
      10.2.5 Middle East & Africa (MEA)
   10.3 Market Attractiveness Analysis By Region

Chapter 11 Coronavirus Disease (COVID-19) Impact 
   11.1 Introduction 
   11.2 Current & Future Impact Analysis 
   11.3 Economic Impact Analysis 
   11.4 Government Policies 
   11.5 Investment Scenario

Chapter 12 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Analysis and Forecast
   12.1 Introduction
   12.2 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast by Country
      12.2.1 U.S.
      12.2.2 Canada
   12.3 Basis Point Share (BPS) Analysis by Country
   12.4 Absolute $ Opportunity Assessment by Country
   12.5 Market Attractiveness Analysis by Country
   12.6 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Lift Technology
      12.6.1 Multirotor
      12.6.2 Vectored Thrust
      12.6.3 Lift Plus Cruise
   12.7 Basis Point Share (BPS) Analysis By Lift Technology 
   12.8 Absolute $ Opportunity Assessment By Lift Technology 
   12.9 Market Attractiveness Analysis By Lift Technology
   12.10 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Mode Of Operation
      12.10.1 Autonomous
      12.10.2 Piloted
      12.10.3 Semi-autonomous
   12.11 Basis Point Share (BPS) Analysis By Mode Of Operation 
   12.12 Absolute $ Opportunity Assessment By Mode Of Operation 
   12.13 Market Attractiveness Analysis By Mode Of Operation
   12.14 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Range
      12.14.1 0-200 km
      12.14.2 200-500 km
      12.14.3 Above 500 km
   12.15 Basis Point Share (BPS) Analysis By Range 
   12.16 Absolute $ Opportunity Assessment By Range 
   12.17 Market Attractiveness Analysis By Range
   12.18 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Propulsion Type
      12.18.1 BatteryElectric
      12.18.2 Hybrid Electric
      12.18.3 Hydrogen Electric
   12.19 Basis Point Share (BPS) Analysis By Propulsion Type 
   12.20 Absolute $ Opportunity Assessment By Propulsion Type 
   12.21 Market Attractiveness Analysis By Propulsion Type
   12.22 North America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Application
      12.22.1 Air Taxis
      12.22.2 Delivery Drones
      12.22.3 Air Ambulance& Medical Emergency
      12.22.4 Private Transport
      12.22.5 Surveillance
      12.22.6 Cargo Transport
      12.22.7 Special Mission
      12.22.8 Last Mile Delivery
      12.22.9 Others
   12.23 Basis Point Share (BPS) Analysis By Application 
   12.24 Absolute $ Opportunity Assessment By Application 
   12.25 Market Attractiveness Analysis By Application

Chapter 13 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Analysis and Forecast
   13.1 Introduction
   13.2 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast by Country
      13.2.1 Germany
      13.2.2 France
      13.2.3 Italy
      13.2.4 U.K.
      13.2.5 Spain
      13.2.6 Russia
      13.2.7 Rest of Europe
   13.3 Basis Point Share (BPS) Analysis by Country
   13.4 Absolute $ Opportunity Assessment by Country
   13.5 Market Attractiveness Analysis by Country
   13.6 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Lift Technology
      13.6.1 Multirotor
      13.6.2 Vectored Thrust
      13.6.3 Lift Plus Cruise
   13.7 Basis Point Share (BPS) Analysis By Lift Technology 
   13.8 Absolute $ Opportunity Assessment By Lift Technology 
   13.9 Market Attractiveness Analysis By Lift Technology
   13.10 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Mode Of Operation
      13.10.1 Autonomous
      13.10.2 Piloted
      13.10.3 Semi-autonomous
   13.11 Basis Point Share (BPS) Analysis By Mode Of Operation 
   13.12 Absolute $ Opportunity Assessment By Mode Of Operation 
   13.13 Market Attractiveness Analysis By Mode Of Operation
   13.14 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Range
      13.14.1 0-200 km
      13.14.2 200-500 km
      13.14.3 Above 500 km
   13.15 Basis Point Share (BPS) Analysis By Range 
   13.16 Absolute $ Opportunity Assessment By Range 
   13.17 Market Attractiveness Analysis By Range
   13.18 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Propulsion Type
      13.18.1 BatteryElectric
      13.18.2 Hybrid Electric
      13.18.3 Hydrogen Electric
   13.19 Basis Point Share (BPS) Analysis By Propulsion Type 
   13.20 Absolute $ Opportunity Assessment By Propulsion Type 
   13.21 Market Attractiveness Analysis By Propulsion Type
   13.22 Europe Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Application
      13.22.1 Air Taxis
      13.22.2 Delivery Drones
      13.22.3 Air Ambulance& Medical Emergency
      13.22.4 Private Transport
      13.22.5 Surveillance
      13.22.6 Cargo Transport
      13.22.7 Special Mission
      13.22.8 Last Mile Delivery
      13.22.9 Others
   13.23 Basis Point Share (BPS) Analysis By Application 
   13.24 Absolute $ Opportunity Assessment By Application 
   13.25 Market Attractiveness Analysis By Application

Chapter 14 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Analysis and Forecast
   14.1 Introduction
   14.2 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast by Country
      14.2.1 China
      14.2.2 Japan
      14.2.3 South Korea
      14.2.4 India
      14.2.5 Australia
      14.2.6 South East Asia (SEA)
      14.2.7 Rest of Asia Pacific (APAC)
   14.3 Basis Point Share (BPS) Analysis by Country
   14.4 Absolute $ Opportunity Assessment by Country
   14.5 Market Attractiveness Analysis by Country
   14.6 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Lift Technology
      14.6.1 Multirotor
      14.6.2 Vectored Thrust
      14.6.3 Lift Plus Cruise
   14.7 Basis Point Share (BPS) Analysis By Lift Technology 
   14.8 Absolute $ Opportunity Assessment By Lift Technology 
   14.9 Market Attractiveness Analysis By Lift Technology
   14.10 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Mode Of Operation
      14.10.1 Autonomous
      14.10.2 Piloted
      14.10.3 Semi-autonomous
   14.11 Basis Point Share (BPS) Analysis By Mode Of Operation 
   14.12 Absolute $ Opportunity Assessment By Mode Of Operation 
   14.13 Market Attractiveness Analysis By Mode Of Operation
   14.14 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Range
      14.14.1 0-200 km
      14.14.2 200-500 km
      14.14.3 Above 500 km
   14.15 Basis Point Share (BPS) Analysis By Range 
   14.16 Absolute $ Opportunity Assessment By Range 
   14.17 Market Attractiveness Analysis By Range
   14.18 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Propulsion Type
      14.18.1 BatteryElectric
      14.18.2 Hybrid Electric
      14.18.3 Hydrogen Electric
   14.19 Basis Point Share (BPS) Analysis By Propulsion Type 
   14.20 Absolute $ Opportunity Assessment By Propulsion Type 
   14.21 Market Attractiveness Analysis By Propulsion Type
   14.22 Asia Pacific Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Application
      14.22.1 Air Taxis
      14.22.2 Delivery Drones
      14.22.3 Air Ambulance& Medical Emergency
      14.22.4 Private Transport
      14.22.5 Surveillance
      14.22.6 Cargo Transport
      14.22.7 Special Mission
      14.22.8 Last Mile Delivery
      14.22.9 Others
   14.23 Basis Point Share (BPS) Analysis By Application 
   14.24 Absolute $ Opportunity Assessment By Application 
   14.25 Market Attractiveness Analysis By Application

Chapter 15 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Analysis and Forecast
   15.1 Introduction
   15.2 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast by Country
      15.2.1 Brazil
      15.2.2 Mexico
      15.2.3 Rest of Latin America (LATAM)
   15.3 Basis Point Share (BPS) Analysis by Country
   15.4 Absolute $ Opportunity Assessment by Country
   15.5 Market Attractiveness Analysis by Country
   15.6 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Lift Technology
      15.6.1 Multirotor
      15.6.2 Vectored Thrust
      15.6.3 Lift Plus Cruise
   15.7 Basis Point Share (BPS) Analysis By Lift Technology 
   15.8 Absolute $ Opportunity Assessment By Lift Technology 
   15.9 Market Attractiveness Analysis By Lift Technology
   15.10 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Mode Of Operation
      15.10.1 Autonomous
      15.10.2 Piloted
      15.10.3 Semi-autonomous
   15.11 Basis Point Share (BPS) Analysis By Mode Of Operation 
   15.12 Absolute $ Opportunity Assessment By Mode Of Operation 
   15.13 Market Attractiveness Analysis By Mode Of Operation
   15.14 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Range
      15.14.1 0-200 km
      15.14.2 200-500 km
      15.14.3 Above 500 km
   15.15 Basis Point Share (BPS) Analysis By Range 
   15.16 Absolute $ Opportunity Assessment By Range 
   15.17 Market Attractiveness Analysis By Range
   15.18 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Propulsion Type
      15.18.1 BatteryElectric
      15.18.2 Hybrid Electric
      15.18.3 Hydrogen Electric
   15.19 Basis Point Share (BPS) Analysis By Propulsion Type 
   15.20 Absolute $ Opportunity Assessment By Propulsion Type 
   15.21 Market Attractiveness Analysis By Propulsion Type
   15.22 Latin America Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Application
      15.22.1 Air Taxis
      15.22.2 Delivery Drones
      15.22.3 Air Ambulance& Medical Emergency
      15.22.4 Private Transport
      15.22.5 Surveillance
      15.22.6 Cargo Transport
      15.22.7 Special Mission
      15.22.8 Last Mile Delivery
      15.22.9 Others
   15.23 Basis Point Share (BPS) Analysis By Application 
   15.24 Absolute $ Opportunity Assessment By Application 
   15.25 Market Attractiveness Analysis By Application

Chapter 16 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Analysis and Forecast
   16.1 Introduction
   16.2 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast by Country
      16.2.1 Saudi Arabia
      16.2.2 South Africa
      16.2.3 UAE
      16.2.4 Rest of Middle East & Africa (MEA)
   16.3 Basis Point Share (BPS) Analysis by Country
   16.4 Absolute $ Opportunity Assessment by Country
   16.5 Market Attractiveness Analysis by Country
   16.6 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Lift Technology
      16.6.1 Multirotor
      16.6.2 Vectored Thrust
      16.6.3 Lift Plus Cruise
   16.7 Basis Point Share (BPS) Analysis By Lift Technology 
   16.8 Absolute $ Opportunity Assessment By Lift Technology 
   16.9 Market Attractiveness Analysis By Lift Technology
   16.10 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Mode Of Operation
      16.10.1 Autonomous
      16.10.2 Piloted
      16.10.3 Semi-autonomous
   16.11 Basis Point Share (BPS) Analysis By Mode Of Operation 
   16.12 Absolute $ Opportunity Assessment By Mode Of Operation 
   16.13 Market Attractiveness Analysis By Mode Of Operation
   16.14 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Range
      16.14.1 0-200 km
      16.14.2 200-500 km
      16.14.3 Above 500 km
   16.15 Basis Point Share (BPS) Analysis By Range 
   16.16 Absolute $ Opportunity Assessment By Range 
   16.17 Market Attractiveness Analysis By Range
   16.18 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Propulsion Type
      16.18.1 BatteryElectric
      16.18.2 Hybrid Electric
      16.18.3 Hydrogen Electric
   16.19 Basis Point Share (BPS) Analysis By Propulsion Type 
   16.20 Absolute $ Opportunity Assessment By Propulsion Type 
   16.21 Market Attractiveness Analysis By Propulsion Type
   16.22 Middle East & Africa (MEA) Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market Size Forecast By Application
      16.22.1 Air Taxis
      16.22.2 Delivery Drones
      16.22.3 Air Ambulance& Medical Emergency
      16.22.4 Private Transport
      16.22.5 Surveillance
      16.22.6 Cargo Transport
      16.22.7 Special Mission
      16.22.8 Last Mile Delivery
      16.22.9 Others
   16.23 Basis Point Share (BPS) Analysis By Application 
   16.24 Absolute $ Opportunity Assessment By Application 
   16.25 Market Attractiveness Analysis By Application

Chapter 17 Competition Landscape 
   17.1 Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market: Competitive Dashboard
   17.2 Global Electric Vertical Take-Off and Landing (eVTOL) Aircraft  Market: Market Share Analysis, 2023
   17.3 Company Profiles (Details – Overview, Financials, Developments, Strategy) 
      17.3.1 Joby Aviation Volocopter Lilium,  EHang Archer Aviation among others

Methodology

Our Clients

Nestle SA
Pfizer
Dassault Aviation
Honda Motor Co. Ltd.
FedEx Logistics
Deloitte
General Electric
The John Holland Group