Digital Agriculture Market Research Report 2033

Digital Agriculture Market Research Report 2033

Segments - by Component (Hardware, Software, Services), by Technology (Precision Farming, Remote Sensing, Variable Rate Technology, Data Analytics, IoT, AI & Machine Learning, Drones, Others), by Application (Crop Monitoring, Soil Management, Irrigation Management, Farm Management, Weather Forecasting, Others), by Deployment Mode (On-Premises, Cloud), by End-User (Farmers, Agribusinesses, Research Institutes, Government Agencies, Others)

https://growthmarketreports.com/Anuradha
Author : Anuradha B. More
https://growthmarketreports.com/Vaibhav
Fact-checked by : Vaibhav Chandola
https://growthmarketreports.com/Shruti
Editor : Shruti Bhat

Upcoming | Report ID :FB-4430 | 4.3 Rating | 68 Reviews | 259 Pages | Format : Docx PDF

Report Description


Digital Agriculture Market Outlook

According to our latest research, the global digital agriculture market size stood at USD 17.8 billion in 2024. The market is exhibiting robust growth, registering a CAGR of 13.4% from 2025 to 2033. By the end of 2033, the digital agriculture market is forecasted to reach a value of approximately USD 54.2 billion. This substantial growth is driven by increasing adoption of advanced technologies, such as IoT, AI, machine learning, and data analytics, which are fundamentally transforming agricultural practices worldwide.

One of the primary growth factors fueling the digital agriculture market is the escalating demand for food production driven by the rapidly growing global population. With arable land per capita shrinking and climate change introducing new uncertainties, farmers and agribusinesses are compelled to adopt innovative solutions to sustain and enhance crop yields. Digital agriculture tools, including precision farming, remote sensing, and variable rate technology, empower stakeholders to make data-driven decisions, optimize resource utilization, and improve productivity. Furthermore, the ability to monitor crops, soil, and weather conditions in real-time is revolutionizing traditional farming, making it more efficient and resilient to external shocks.

Another significant driver is the increasing integration of IoT and AI-based technologies in agriculture. These advanced solutions enable real-time data collection and analysis, facilitating predictive analytics for crop health, pest management, and irrigation scheduling. The proliferation of connected devices and sensors across farms allows for granular monitoring of field conditions, leading to precise interventions that minimize waste and maximize output. As digital literacy among farmers improves and the cost of technology adoption continues to decline, the penetration of digital agriculture solutions is expected to rise rapidly across both developed and emerging markets.

Government initiatives and supportive regulatory frameworks are also playing a pivotal role in accelerating the adoption of digital agriculture. Several governments, particularly in Asia Pacific and Europe, are investing heavily in smart agriculture projects, providing subsidies, and launching awareness programs to educate farmers about the benefits of digital technologies. Public-private partnerships are fostering innovation, while research institutes are developing region-specific solutions to address local agricultural challenges. These collective efforts are creating a conducive ecosystem for the digital agriculture market to thrive, ensuring food security and sustainability in the long run.

Regionally, North America currently dominates the digital agriculture market, owing to high technological adoption rates, strong infrastructure, and significant investments by key market players. However, Asia Pacific is expected to witness the fastest growth over the forecast period, driven by the vast agricultural landscape, increasing government support, and a rising number of tech-savvy farmers. Europe is also making significant strides, particularly in precision farming and sustainable agriculture practices. Meanwhile, Latin America and the Middle East & Africa are gradually catching up, with digital agriculture solutions being tailored to suit the unique needs of these regions.

Global Digital Agriculture Industry Outlook

Component Analysis

The digital agriculture market is segmented by component into hardware, software, and services, each playing a critical role in the overall ecosystem. Hardware constitutes the backbone of digital agriculture, encompassing sensors, drones, GPS devices, and automated machinery. These devices are essential for capturing real-time data from the field, enabling precise monitoring of crop and soil health. The hardware segment has witnessed significant advancements in recent years, with the introduction of rugged, low-cost sensors and autonomous drones that can cover large tracts of farmland efficiently. The rising affordability and accessibility of these devices are encouraging even small and medium-sized farms to embrace digital agriculture solutions.

Software solutions are integral to the digital agriculture market, providing the analytical and decision-support capabilities required to translate raw data into actionable insights. Farm management software, data analytics platforms, and mobile applications are empowering farmers to plan, monitor, and optimize their operations with unprecedented accuracy. These solutions often feature intuitive dashboards, predictive modeling, and integration with other farm equipment, facilitating seamless data flow and real-time decision-making. The software segment is also experiencing rapid innovation, with cloud-based platforms becoming increasingly popular due to their scalability and ease of access.

Services form the third critical component of the digital agriculture market, encompassing consulting, training, system integration, and maintenance. As digital agriculture solutions become more sophisticated, the demand for specialized services is rising, especially among farmers and agribusinesses with limited technical expertise. Service providers play a vital role in ensuring successful implementation, customization, and ongoing support of digital agriculture systems. They also offer training programs to enhance digital literacy among end-users, thereby accelerating technology adoption and maximizing the return on investment for stakeholders.

The interplay between hardware, software, and services is central to the success of digital agriculture initiatives. Integrated solutions that combine robust hardware with advanced software and reliable support services are gaining traction, as they offer end-to-end value propositions to farmers and agribusinesses. Market players are increasingly focusing on developing interoperable platforms and fostering strategic partnerships to deliver comprehensive digital agriculture solutions that address the diverse needs of the agricultural sector.

Report Scope

Attributes Details
Report Title Digital Agriculture Market Research Report 2033
By Component Hardware, Software, Services
By Technology Precision Farming, Remote Sensing, Variable Rate Technology, Data Analytics, IoT, AI & Machine Learning, Drones, Others
By Application Crop Monitoring, Soil Management, Irrigation Management, Farm Management, Weather Forecasting, Others
By Deployment Mode On-Premises, Cloud
By End-User Farmers, Agribusinesses, Research Institutes, Government Agencies, Others
Regions Covered North America, Europe, APAC, Latin America, MEA
Base Year 2024
Historic Data 2018-2023
Forecast Period 2025-2033
Number of Pages 259
Number of Tables & Figures 317
Customization Available Yes, the report can be customized as per your need.

Technology Analysis

The technology landscape of the digital agriculture market is dynamic and multifaceted, encompassing precision farming, remote sensing, variable rate technology (VRT), data analytics, IoT, AI and machine learning, drones, and other emerging solutions. Precision farming is at the forefront, leveraging GPS, GIS, and sensor technologies to enable site-specific management of crops and resources. By optimizing inputs such as seeds, fertilizers, and water, precision farming enhances yield, reduces environmental impact, and lowers operational costs. This segment is witnessing rapid adoption, particularly in regions with large-scale commercial agriculture.

Remote sensing technologies, including satellite imagery and drone-based aerial surveys, are revolutionizing the way farmers monitor crop health, soil conditions, and pest infestations. These technologies provide high-resolution, real-time data that enable early detection of issues and timely interventions. Variable rate technology (VRT) further enhances this capability by enabling automated, site-specific application of inputs, thereby maximizing efficiency and minimizing waste. The integration of remote sensing and VRT is transforming traditional farming into a data-driven, precision-oriented practice.

Data analytics, IoT, and AI & machine learning are the driving forces behind the digital transformation of agriculture. IoT devices and sensors collect vast amounts of data from the field, which is then processed and analyzed using advanced analytics and AI algorithms. These technologies enable predictive modeling, anomaly detection, and automated decision-making, empowering farmers to optimize operations and mitigate risks. The use of AI and machine learning is particularly impactful in areas such as crop disease prediction, yield forecasting, and resource management.

Drones and other emerging technologies are adding new dimensions to digital agriculture by enabling rapid, cost-effective, and scalable monitoring of large agricultural areas. Drones equipped with multispectral cameras and AI-powered analytics can identify crop stress, nutrient deficiencies, and pest outbreaks with high accuracy. As drone regulations become more favorable and technology costs decline, their adoption is expected to surge across both developed and emerging markets. Collectively, these technologies are reshaping the agricultural landscape, making it smarter, more sustainable, and resilient to future challenges.

Application Analysis

Digital agriculture solutions are being deployed across a wide range of applications, including crop monitoring, soil management, irrigation management, farm management, weather forecasting, and others. Crop monitoring is one of the most prominent applications, leveraging sensors, drones, and remote sensing technologies to track crop health, growth stages, and detect early signs of disease or pest infestation. This real-time monitoring capability enables farmers to take timely actions, minimize losses, and optimize yields. The integration of AI and machine learning further enhances the accuracy and predictive power of crop monitoring solutions.

Soil management is another critical application area, as soil health is fundamental to sustainable agriculture. Digital agriculture tools enable precise measurement of soil moisture, nutrient levels, and pH, facilitating targeted interventions such as fertilization and irrigation. These solutions help prevent overuse of chemicals, reduce environmental impact, and improve soil fertility over time. The adoption of soil management technologies is particularly high in regions facing soil degradation and water scarcity challenges.

Irrigation management is gaining traction as water resources become increasingly scarce and costly. Digital irrigation systems equipped with sensors and automated controls enable precise scheduling and application of water, ensuring optimal moisture levels for crops while minimizing waste. These systems often integrate with weather forecasting tools to adjust irrigation plans based on real-time and predicted weather conditions. The result is improved water use efficiency, reduced costs, and enhanced crop resilience to drought.

Farm management solutions provide a holistic approach to managing agricultural operations, encompassing planning, resource allocation, financial management, and compliance. These platforms consolidate data from various sources, offering a unified view of farm activities and enabling data-driven decision-making. Weather forecasting is also a vital application, as accurate and timely weather information is essential for planning and risk mitigation. Advanced digital agriculture platforms integrate weather data with other farm management tools, providing actionable insights that enhance overall farm productivity and profitability.

Deployment Mode Analysis

The deployment mode segment of the digital agriculture market is bifurcated into on-premises and cloud-based solutions, each offering distinct advantages and addressing different user needs. On-premises solutions are typically favored by large-scale agribusinesses and research institutes that require complete control over their data and IT infrastructure. These solutions offer high levels of customization, security, and integration with existing systems, making them suitable for organizations with complex operational requirements. However, the initial investment and maintenance costs associated with on-premises deployments can be significant, potentially limiting their adoption among smaller stakeholders.

Cloud-based solutions are rapidly gaining popularity in the digital agriculture market, particularly among small and medium-sized farms, cooperatives, and government agencies. The primary advantage of cloud deployment is its scalability, allowing users to access advanced digital agriculture tools without the need for substantial upfront investment in IT infrastructure. Cloud platforms offer flexibility, remote accessibility, and seamless updates, enabling farmers to leverage the latest technologies and analytical capabilities. Additionally, cloud-based solutions facilitate collaboration and data sharing among multiple stakeholders, fostering a more connected and efficient agricultural ecosystem.

The growing preference for cloud deployment is also driven by the increasing adoption of mobile devices and internet connectivity in rural areas. Farmers can access cloud-based digital agriculture solutions from their smartphones or tablets, enabling real-time monitoring and decision-making from virtually anywhere. This accessibility is particularly valuable in regions with dispersed farming communities and limited access to traditional IT resources. As internet penetration continues to rise globally, the adoption of cloud-based digital agriculture solutions is expected to accelerate further.

Despite the advantages of cloud deployment, concerns related to data security, privacy, and connectivity persist, particularly in regions with limited digital infrastructure. Market players are addressing these challenges by implementing robust security protocols, offering hybrid deployment options, and developing offline functionalities that ensure continuity of operations even in low-connectivity environments. The ongoing evolution of deployment models is expected to make digital agriculture solutions more accessible, secure, and user-friendly, driving broader adoption across the agricultural value chain.

End-User Analysis

The end-user segment of the digital agriculture market encompasses farmers, agribusinesses, research institutes, government agencies, and other stakeholders, each with unique needs and adoption patterns. Farmers represent the largest end-user group, as they are the primary beneficiaries of digital agriculture solutions. These technologies enable farmers to optimize resource use, increase yields, and improve profitability, making them indispensable tools for modern agriculture. The adoption rate among farmers varies by region and farm size, with large commercial farms leading the way in technology adoption, while smallholders are gradually catching up as solutions become more affordable and accessible.

Agribusinesses, including input suppliers, food processors, and distributors, are increasingly leveraging digital agriculture solutions to streamline their supply chains, enhance traceability, and ensure product quality. These organizations often deploy integrated platforms that connect multiple stakeholders, enabling end-to-end visibility and coordination across the agricultural value chain. The ability to track products from farm to fork is becoming a critical differentiator in the competitive agribusiness landscape, driven by rising consumer demand for transparency and sustainability.

Research institutes and academic organizations play a vital role in advancing digital agriculture by developing new technologies, conducting field trials, and disseminating best practices. These entities often collaborate with technology providers, government agencies, and farmers to pilot innovative solutions and validate their effectiveness in real-world conditions. The insights generated by research institutes are instrumental in shaping industry standards, guiding policy decisions, and accelerating the adoption of digital agriculture at scale.

Government agencies are key enablers of the digital agriculture market, providing funding, policy support, and infrastructure development. Many governments are launching digital agriculture initiatives, offering subsidies for technology adoption, and establishing data-sharing platforms to support farmers and agribusinesses. These efforts are particularly impactful in emerging markets, where government intervention is often necessary to overcome barriers related to affordability, awareness, and infrastructure. The collaborative efforts of all end-user segments are essential for realizing the full potential of digital agriculture and achieving sustainable, resilient food systems.

Opportunities & Threats

The digital agriculture market presents a plethora of opportunities for stakeholders across the agricultural value chain. One of the most significant opportunities lies in the integration of advanced technologies such as AI, machine learning, and big data analytics, which can unlock new levels of efficiency and productivity. As the cost of digital tools continues to decline, even small and medium-sized farms can benefit from precision agriculture, remote sensing, and automated decision-making. The growing emphasis on sustainability and environmental stewardship is also driving demand for digital solutions that enable resource optimization, reduce chemical usage, and minimize carbon footprints. Market players that can deliver user-friendly, cost-effective, and scalable solutions stand to gain a competitive edge in this rapidly evolving market.

Another major opportunity is the expansion of digital agriculture into emerging markets, where the potential for productivity gains is immense. Governments and development agencies are increasingly investing in digital infrastructure, training programs, and pilot projects to promote technology adoption among smallholder farmers. The rise of agri-tech startups and innovative business models, such as pay-as-you-go and subscription-based services, is making digital agriculture more accessible to underserved segments. Additionally, the convergence of digital agriculture with other sectors, such as fintech and e-commerce, is creating new avenues for value creation and market expansion.

Despite the numerous opportunities, the digital agriculture market faces several restraining factors that could impede its growth. One of the primary challenges is the digital divide, particularly in rural and remote areas with limited access to reliable internet connectivity and digital infrastructure. High initial investment costs, lack of digital literacy, and concerns about data privacy and security are also significant barriers to adoption, especially among smallholder farmers. Addressing these challenges requires concerted efforts from governments, technology providers, and development organizations to build the necessary infrastructure, provide affordable solutions, and enhance digital skills among end-users.

Regional Outlook

North America currently leads the global digital agriculture market, accounting for approximately USD 6.8 billion in 2024. The region's dominance is attributed to its advanced technological infrastructure, high adoption rates of precision farming, and substantial investments by leading agribusinesses and technology providers. The United States and Canada are at the forefront, with large-scale commercial farms embracing digital solutions to enhance productivity and sustainability. The presence of major market players and a supportive regulatory environment further bolster North America's position as a key hub for digital agriculture innovation.

Asia Pacific is emerging as the fastest-growing region in the digital agriculture market, with a projected CAGR of 16.2% from 2025 to 2033. The region's market size reached USD 4.2 billion in 2024, driven by the vast agricultural landscape, increasing government support, and a rising number of tech-savvy farmers. Countries such as China, India, and Australia are making significant investments in smart agriculture projects, digital infrastructure, and farmer training programs. The adoption of digital agriculture solutions is particularly high in countries with large populations and pressing food security challenges, positioning Asia Pacific as a key growth engine for the global market.

Europe holds a significant share of the digital agriculture market, valued at USD 3.9 billion in 2024. The region is characterized by a strong focus on sustainability, precision farming, and regulatory compliance. European Union initiatives, such as the Common Agricultural Policy (CAP) and the European Green Deal, are driving the adoption of digital technologies to promote sustainable agriculture and reduce environmental impact. Meanwhile, Latin America and the Middle East & Africa are gradually embracing digital agriculture, with market sizes of USD 1.7 billion and USD 1.2 billion respectively in 2024. These regions are benefiting from tailored solutions that address local agricultural challenges and resource constraints, paving the way for future growth.

Digital Agriculture Market Statistics

Competitor Outlook

The digital agriculture market is characterized by intense competition, with a diverse mix of global technology giants, specialized agri-tech startups, and established agribusinesses vying for market share. The competitive landscape is shaped by rapid technological advancements, strategic partnerships, and continuous innovation. Market leaders are investing heavily in research and development to enhance their product portfolios, integrate advanced analytics and AI capabilities, and deliver end-to-end digital agriculture solutions. The ability to offer scalable, interoperable, and user-friendly platforms is emerging as a key differentiator in this dynamic market.

Strategic collaborations and partnerships are becoming increasingly common as companies seek to leverage complementary strengths and expand their market reach. Technology providers are partnering with agricultural equipment manufacturers, input suppliers, and research institutes to develop integrated solutions that address the diverse needs of farmers and agribusinesses. Mergers and acquisitions are also on the rise, enabling companies to accelerate innovation, access new markets, and strengthen their competitive positions. The entry of non-traditional players, such as fintech and e-commerce companies, is further intensifying competition and driving convergence across the agricultural value chain.

The competitive dynamics of the digital agriculture market are also influenced by the growing importance of data ownership, privacy, and security. Companies that can offer robust data protection and transparent data governance frameworks are gaining trust among farmers and other stakeholders. Additionally, the ability to deliver localized solutions that cater to the specific needs of different regions and crops is proving to be a critical success factor. As the market continues to evolve, agility, innovation, and customer-centricity will remain paramount for companies seeking to maintain a competitive edge.

Major players in the digital agriculture market include Deere & Company (John Deere), Trimble Inc., AGCO Corporation, IBM Corporation, Bayer AG, Topcon Positioning Systems, Inc., Raven Industries, Inc., Climate LLC (a subsidiary of Bayer), and Hexagon Agriculture. Deere & Company is renowned for its advanced precision agriculture equipment and integrated digital platforms, while Trimble Inc. specializes in GPS and GIS solutions for precision farming. AGCO Corporation offers a comprehensive suite of smart farming technologies, and IBM Corporation is leveraging its expertise in AI and data analytics to deliver innovative agricultural solutions. Bayer AG and its subsidiary Climate LLC are at the forefront of digital farming platforms and data-driven decision support tools. Topcon Positioning Systems and Raven Industries are recognized for their precision guidance and automation technologies, while Hexagon Agriculture offers integrated solutions for farm management and optimization.

These companies are continuously expanding their product offerings, investing in R&D, and forging strategic alliances to stay ahead in the competitive digital agriculture market. Their commitment to innovation, customer engagement, and sustainability is driving the adoption of digital agriculture solutions worldwide, paving the way for a smarter, more resilient, and sustainable agricultural future.

Key Players

  • Deere & Company
  • Trimble Inc.
  • AGCO Corporation
  • Bayer CropScience AG
  • Corteva Agriscience
  • Syngenta AG
  • Topcon Positioning Systems
  • Raven Industries
  • Climate LLC (a subsidiary of Bayer)
  • CNH Industrial N.V.
  • Kubota Corporation
  • Yara International ASA
  • Taranis
  • Granular, Inc.
  • Ag Leader Technology
  • Proagrica (RELX Group)
  • Iteris, Inc.
  • PrecisionHawk
  • Farmers Edge Inc.
  • Hexagon Agriculture
Digital Agriculture Market Overview

Segments

The Digital Agriculture market has been segmented on the basis of

Component

  • Hardware
  • Software
  • Services

Technology

  • Precision Farming
  • Remote Sensing
  • Variable Rate Technology
  • Data Analytics
  • IoT
  • AI & Machine Learning
  • Drones
  • Others

Application

  • Crop Monitoring
  • Soil Management
  • Irrigation Management
  • Farm Management
  • Weather Forecasting
  • Others

Deployment Mode

  • On-Premises
  • Cloud

End-User

  • Farmers
  • Agribusinesses
  • Research Institutes
  • Government Agencies
  • Others

Competitive Landscape

Key players competing in the global digital agriculture market are Accenture; Syngenta AG; AgGateway; CropX Inc.; DTN; Farmers Edge Inc.; Taranis; Eurofins Scientific; AgriWebb; Monsanto Company; Bayer AG; Deere & Company; and Farmers Business Network.

One of the key players, TELUS Agriculture, announced the opening of a new business unit in November 2020 that announced to provide innovative and sophisticated solutions to assist the agriculture industry and to become digitalized and connected. The service is expected to aid in data analysis and manufacturing, increased efficiency and improved food quality.

Digital Agriculture Market Share

Frequently Asked Questions

Key players competing in the global digital agriculture market are Accenture; Syngenta AG; AgGateway; CropX Inc.; DTN; Farmers Edge Inc.; Taranis; Eurofins Scientific; AgriWebb; Monsanto Company; Bayer AG; Deere & Company; and Farmers Business Network.

Asia Pacific is expected to constitute a key share of the market during the forecast period.

The global digital agriculture market is expanding at a CAGR of 10.11% during the forecast period, 2023–2031.

Growing population further demand for high agricultural productivity and is expected to drive the market.

The global digital agriculture market size was valued at around USD 14.51 billion in 2022.

Table Of Content

Chapter 1 Executive Summary
Chapter 2 Assumptions and Acronyms Used
Chapter 3 Research Methodology
Chapter 4 Digital Agriculture Market Overview
   4.1 Introduction
      4.1.1 Market Taxonomy
      4.1.2 Market Definition
      4.1.3 Macro-Economic Factors Impacting the Market Growth
   4.2 Digital Agriculture Market Dynamics
      4.2.1 Market Drivers
      4.2.2 Market Restraints
      4.2.3 Market Opportunity
   4.3 Digital Agriculture Market - Supply Chain Analysis
      4.3.1 List of Key Suppliers
      4.3.2 List of Key Distributors
      4.3.3 List of Key Consumers
   4.4 Key Forces Shaping the Digital Agriculture Market
      4.4.1 Bargaining Power of Suppliers
      4.4.2 Bargaining Power of Buyers
      4.4.3 Threat of Substitution
      4.4.4 Threat of New Entrants
      4.4.5 Competitive Rivalry
   4.5 Global Digital Agriculture Market Size & Forecast, 2023-2032
      4.5.1 Digital Agriculture Market Size and Y-o-Y Growth
      4.5.2 Digital Agriculture Market Absolute $ Opportunity

Chapter 5 Global Digital Agriculture Market Analysis and Forecast By Component
   5.1 Introduction
      5.1.1 Key Market Trends & Growth Opportunities By Component
      5.1.2 Basis Point Share (BPS) Analysis By Component
      5.1.3 Absolute $ Opportunity Assessment By Component
   5.2 Digital Agriculture Market Size Forecast By Component
      5.2.1 Hardware
      5.2.2 Software
      5.2.3 Services
   5.3 Market Attractiveness Analysis By Component

Chapter 6 Global Digital Agriculture Market Analysis and Forecast By Technology
   6.1 Introduction
      6.1.1 Key Market Trends & Growth Opportunities By Technology
      6.1.2 Basis Point Share (BPS) Analysis By Technology
      6.1.3 Absolute $ Opportunity Assessment By Technology
   6.2 Digital Agriculture Market Size Forecast By Technology
      6.2.1 Precision Farming
      6.2.2 Remote Sensing
      6.2.3 Variable Rate Technology
      6.2.4 Data Analytics
      6.2.5 IoT
      6.2.6 AI & Machine Learning
      6.2.7 Drones
      6.2.8 Others
   6.3 Market Attractiveness Analysis By Technology

Chapter 7 Global Digital Agriculture Market Analysis and Forecast By Application
   7.1 Introduction
      7.1.1 Key Market Trends & Growth Opportunities By Application
      7.1.2 Basis Point Share (BPS) Analysis By Application
      7.1.3 Absolute $ Opportunity Assessment By Application
   7.2 Digital Agriculture Market Size Forecast By Application
      7.2.1 Crop Monitoring
      7.2.2 Soil Management
      7.2.3 Irrigation Management
      7.2.4 Farm Management
      7.2.5 Weather Forecasting
      7.2.6 Others
   7.3 Market Attractiveness Analysis By Application

Chapter 8 Global Digital Agriculture Market Analysis and Forecast By Deployment Mode
   8.1 Introduction
      8.1.1 Key Market Trends & Growth Opportunities By Deployment Mode
      8.1.2 Basis Point Share (BPS) Analysis By Deployment Mode
      8.1.3 Absolute $ Opportunity Assessment By Deployment Mode
   8.2 Digital Agriculture Market Size Forecast By Deployment Mode
      8.2.1 On-Premises
      8.2.2 Cloud
   8.3 Market Attractiveness Analysis By Deployment Mode

Chapter 9 Global Digital Agriculture Market Analysis and Forecast By End-User
   9.1 Introduction
      9.1.1 Key Market Trends & Growth Opportunities By End-User
      9.1.2 Basis Point Share (BPS) Analysis By End-User
      9.1.3 Absolute $ Opportunity Assessment By End-User
   9.2 Digital Agriculture Market Size Forecast By End-User
      9.2.1 Farmers
      9.2.2 Agribusinesses
      9.2.3 Research Institutes
      9.2.4 Government Agencies
      9.2.5 Others
   9.3 Market Attractiveness Analysis By End-User

Chapter 10 Global Digital Agriculture Market Analysis and Forecast by Region
   10.1 Introduction
      10.1.1 Key Market Trends & Growth Opportunities By Region
      10.1.2 Basis Point Share (BPS) Analysis By Region
      10.1.3 Absolute $ Opportunity Assessment By Region
   10.2 Digital Agriculture Market Size Forecast By Region
      10.2.1 North America
      10.2.2 Europe
      10.2.3 Asia Pacific
      10.2.4 Latin America
      10.2.5 Middle East & Africa (MEA)
   10.3 Market Attractiveness Analysis By Region

Chapter 11 Coronavirus Disease (COVID-19) Impact 
   11.1 Introduction 
   11.2 Current & Future Impact Analysis 
   11.3 Economic Impact Analysis 
   11.4 Government Policies 
   11.5 Investment Scenario

Chapter 12 North America Digital Agriculture Analysis and Forecast
   12.1 Introduction
   12.2 North America Digital Agriculture Market Size Forecast by Country
      12.2.1 U.S.
      12.2.2 Canada
   12.3 Basis Point Share (BPS) Analysis by Country
   12.4 Absolute $ Opportunity Assessment by Country
   12.5 Market Attractiveness Analysis by Country
   12.6 North America Digital Agriculture Market Size Forecast By Component
      12.6.1 Hardware
      12.6.2 Software
      12.6.3 Services
   12.7 Basis Point Share (BPS) Analysis By Component 
   12.8 Absolute $ Opportunity Assessment By Component 
   12.9 Market Attractiveness Analysis By Component
   12.10 North America Digital Agriculture Market Size Forecast By Technology
      12.10.1 Precision Farming
      12.10.2 Remote Sensing
      12.10.3 Variable Rate Technology
      12.10.4 Data Analytics
      12.10.5 IoT
      12.10.6 AI & Machine Learning
      12.10.7 Drones
      12.10.8 Others
   12.11 Basis Point Share (BPS) Analysis By Technology 
   12.12 Absolute $ Opportunity Assessment By Technology 
   12.13 Market Attractiveness Analysis By Technology
   12.14 North America Digital Agriculture Market Size Forecast By Application
      12.14.1 Crop Monitoring
      12.14.2 Soil Management
      12.14.3 Irrigation Management
      12.14.4 Farm Management
      12.14.5 Weather Forecasting
      12.14.6 Others
   12.15 Basis Point Share (BPS) Analysis By Application 
   12.16 Absolute $ Opportunity Assessment By Application 
   12.17 Market Attractiveness Analysis By Application
   12.18 North America Digital Agriculture Market Size Forecast By Deployment Mode
      12.18.1 On-Premises
      12.18.2 Cloud
   12.19 Basis Point Share (BPS) Analysis By Deployment Mode 
   12.20 Absolute $ Opportunity Assessment By Deployment Mode 
   12.21 Market Attractiveness Analysis By Deployment Mode
   12.22 North America Digital Agriculture Market Size Forecast By End-User
      12.22.1 Farmers
      12.22.2 Agribusinesses
      12.22.3 Research Institutes
      12.22.4 Government Agencies
      12.22.5 Others
   12.23 Basis Point Share (BPS) Analysis By End-User 
   12.24 Absolute $ Opportunity Assessment By End-User 
   12.25 Market Attractiveness Analysis By End-User

Chapter 13 Europe Digital Agriculture Analysis and Forecast
   13.1 Introduction
   13.2 Europe Digital Agriculture Market Size Forecast by Country
      13.2.1 Germany
      13.2.2 France
      13.2.3 Italy
      13.2.4 U.K.
      13.2.5 Spain
      13.2.6 Russia
      13.2.7 Rest of Europe
   13.3 Basis Point Share (BPS) Analysis by Country
   13.4 Absolute $ Opportunity Assessment by Country
   13.5 Market Attractiveness Analysis by Country
   13.6 Europe Digital Agriculture Market Size Forecast By Component
      13.6.1 Hardware
      13.6.2 Software
      13.6.3 Services
   13.7 Basis Point Share (BPS) Analysis By Component 
   13.8 Absolute $ Opportunity Assessment By Component 
   13.9 Market Attractiveness Analysis By Component
   13.10 Europe Digital Agriculture Market Size Forecast By Technology
      13.10.1 Precision Farming
      13.10.2 Remote Sensing
      13.10.3 Variable Rate Technology
      13.10.4 Data Analytics
      13.10.5 IoT
      13.10.6 AI & Machine Learning
      13.10.7 Drones
      13.10.8 Others
   13.11 Basis Point Share (BPS) Analysis By Technology 
   13.12 Absolute $ Opportunity Assessment By Technology 
   13.13 Market Attractiveness Analysis By Technology
   13.14 Europe Digital Agriculture Market Size Forecast By Application
      13.14.1 Crop Monitoring
      13.14.2 Soil Management
      13.14.3 Irrigation Management
      13.14.4 Farm Management
      13.14.5 Weather Forecasting
      13.14.6 Others
   13.15 Basis Point Share (BPS) Analysis By Application 
   13.16 Absolute $ Opportunity Assessment By Application 
   13.17 Market Attractiveness Analysis By Application
   13.18 Europe Digital Agriculture Market Size Forecast By Deployment Mode
      13.18.1 On-Premises
      13.18.2 Cloud
   13.19 Basis Point Share (BPS) Analysis By Deployment Mode 
   13.20 Absolute $ Opportunity Assessment By Deployment Mode 
   13.21 Market Attractiveness Analysis By Deployment Mode
   13.22 Europe Digital Agriculture Market Size Forecast By End-User
      13.22.1 Farmers
      13.22.2 Agribusinesses
      13.22.3 Research Institutes
      13.22.4 Government Agencies
      13.22.5 Others
   13.23 Basis Point Share (BPS) Analysis By End-User 
   13.24 Absolute $ Opportunity Assessment By End-User 
   13.25 Market Attractiveness Analysis By End-User

Chapter 14 Asia Pacific Digital Agriculture Analysis and Forecast
   14.1 Introduction
   14.2 Asia Pacific Digital Agriculture Market Size Forecast by Country
      14.2.1 China
      14.2.2 Japan
      14.2.3 South Korea
      14.2.4 India
      14.2.5 Australia
      14.2.6 South East Asia (SEA)
      14.2.7 Rest of Asia Pacific (APAC)
   14.3 Basis Point Share (BPS) Analysis by Country
   14.4 Absolute $ Opportunity Assessment by Country
   14.5 Market Attractiveness Analysis by Country
   14.6 Asia Pacific Digital Agriculture Market Size Forecast By Component
      14.6.1 Hardware
      14.6.2 Software
      14.6.3 Services
   14.7 Basis Point Share (BPS) Analysis By Component 
   14.8 Absolute $ Opportunity Assessment By Component 
   14.9 Market Attractiveness Analysis By Component
   14.10 Asia Pacific Digital Agriculture Market Size Forecast By Technology
      14.10.1 Precision Farming
      14.10.2 Remote Sensing
      14.10.3 Variable Rate Technology
      14.10.4 Data Analytics
      14.10.5 IoT
      14.10.6 AI & Machine Learning
      14.10.7 Drones
      14.10.8 Others
   14.11 Basis Point Share (BPS) Analysis By Technology 
   14.12 Absolute $ Opportunity Assessment By Technology 
   14.13 Market Attractiveness Analysis By Technology
   14.14 Asia Pacific Digital Agriculture Market Size Forecast By Application
      14.14.1 Crop Monitoring
      14.14.2 Soil Management
      14.14.3 Irrigation Management
      14.14.4 Farm Management
      14.14.5 Weather Forecasting
      14.14.6 Others
   14.15 Basis Point Share (BPS) Analysis By Application 
   14.16 Absolute $ Opportunity Assessment By Application 
   14.17 Market Attractiveness Analysis By Application
   14.18 Asia Pacific Digital Agriculture Market Size Forecast By Deployment Mode
      14.18.1 On-Premises
      14.18.2 Cloud
   14.19 Basis Point Share (BPS) Analysis By Deployment Mode 
   14.20 Absolute $ Opportunity Assessment By Deployment Mode 
   14.21 Market Attractiveness Analysis By Deployment Mode
   14.22 Asia Pacific Digital Agriculture Market Size Forecast By End-User
      14.22.1 Farmers
      14.22.2 Agribusinesses
      14.22.3 Research Institutes
      14.22.4 Government Agencies
      14.22.5 Others
   14.23 Basis Point Share (BPS) Analysis By End-User 
   14.24 Absolute $ Opportunity Assessment By End-User 
   14.25 Market Attractiveness Analysis By End-User

Chapter 15 Latin America Digital Agriculture Analysis and Forecast
   15.1 Introduction
   15.2 Latin America Digital Agriculture Market Size Forecast by Country
      15.2.1 Brazil
      15.2.2 Mexico
      15.2.3 Rest of Latin America (LATAM)
   15.3 Basis Point Share (BPS) Analysis by Country
   15.4 Absolute $ Opportunity Assessment by Country
   15.5 Market Attractiveness Analysis by Country
   15.6 Latin America Digital Agriculture Market Size Forecast By Component
      15.6.1 Hardware
      15.6.2 Software
      15.6.3 Services
   15.7 Basis Point Share (BPS) Analysis By Component 
   15.8 Absolute $ Opportunity Assessment By Component 
   15.9 Market Attractiveness Analysis By Component
   15.10 Latin America Digital Agriculture Market Size Forecast By Technology
      15.10.1 Precision Farming
      15.10.2 Remote Sensing
      15.10.3 Variable Rate Technology
      15.10.4 Data Analytics
      15.10.5 IoT
      15.10.6 AI & Machine Learning
      15.10.7 Drones
      15.10.8 Others
   15.11 Basis Point Share (BPS) Analysis By Technology 
   15.12 Absolute $ Opportunity Assessment By Technology 
   15.13 Market Attractiveness Analysis By Technology
   15.14 Latin America Digital Agriculture Market Size Forecast By Application
      15.14.1 Crop Monitoring
      15.14.2 Soil Management
      15.14.3 Irrigation Management
      15.14.4 Farm Management
      15.14.5 Weather Forecasting
      15.14.6 Others
   15.15 Basis Point Share (BPS) Analysis By Application 
   15.16 Absolute $ Opportunity Assessment By Application 
   15.17 Market Attractiveness Analysis By Application
   15.18 Latin America Digital Agriculture Market Size Forecast By Deployment Mode
      15.18.1 On-Premises
      15.18.2 Cloud
   15.19 Basis Point Share (BPS) Analysis By Deployment Mode 
   15.20 Absolute $ Opportunity Assessment By Deployment Mode 
   15.21 Market Attractiveness Analysis By Deployment Mode
   15.22 Latin America Digital Agriculture Market Size Forecast By End-User
      15.22.1 Farmers
      15.22.2 Agribusinesses
      15.22.3 Research Institutes
      15.22.4 Government Agencies
      15.22.5 Others
   15.23 Basis Point Share (BPS) Analysis By End-User 
   15.24 Absolute $ Opportunity Assessment By End-User 
   15.25 Market Attractiveness Analysis By End-User

Chapter 16 Middle East & Africa (MEA) Digital Agriculture Analysis and Forecast
   16.1 Introduction
   16.2 Middle East & Africa (MEA) Digital Agriculture Market Size Forecast by Country
      16.2.1 Saudi Arabia
      16.2.2 South Africa
      16.2.3 UAE
      16.2.4 Rest of Middle East & Africa (MEA)
   16.3 Basis Point Share (BPS) Analysis by Country
   16.4 Absolute $ Opportunity Assessment by Country
   16.5 Market Attractiveness Analysis by Country
   16.6 Middle East & Africa (MEA) Digital Agriculture Market Size Forecast By Component
      16.6.1 Hardware
      16.6.2 Software
      16.6.3 Services
   16.7 Basis Point Share (BPS) Analysis By Component 
   16.8 Absolute $ Opportunity Assessment By Component 
   16.9 Market Attractiveness Analysis By Component
   16.10 Middle East & Africa (MEA) Digital Agriculture Market Size Forecast By Technology
      16.10.1 Precision Farming
      16.10.2 Remote Sensing
      16.10.3 Variable Rate Technology
      16.10.4 Data Analytics
      16.10.5 IoT
      16.10.6 AI & Machine Learning
      16.10.7 Drones
      16.10.8 Others
   16.11 Basis Point Share (BPS) Analysis By Technology 
   16.12 Absolute $ Opportunity Assessment By Technology 
   16.13 Market Attractiveness Analysis By Technology
   16.14 Middle East & Africa (MEA) Digital Agriculture Market Size Forecast By Application
      16.14.1 Crop Monitoring
      16.14.2 Soil Management
      16.14.3 Irrigation Management
      16.14.4 Farm Management
      16.14.5 Weather Forecasting
      16.14.6 Others
   16.15 Basis Point Share (BPS) Analysis By Application 
   16.16 Absolute $ Opportunity Assessment By Application 
   16.17 Market Attractiveness Analysis By Application
   16.18 Middle East & Africa (MEA) Digital Agriculture Market Size Forecast By Deployment Mode
      16.18.1 On-Premises
      16.18.2 Cloud
   16.19 Basis Point Share (BPS) Analysis By Deployment Mode 
   16.20 Absolute $ Opportunity Assessment By Deployment Mode 
   16.21 Market Attractiveness Analysis By Deployment Mode
   16.22 Middle East & Africa (MEA) Digital Agriculture Market Size Forecast By End-User
      16.22.1 Farmers
      16.22.2 Agribusinesses
      16.22.3 Research Institutes
      16.22.4 Government Agencies
      16.22.5 Others
   16.23 Basis Point Share (BPS) Analysis By End-User 
   16.24 Absolute $ Opportunity Assessment By End-User 
   16.25 Market Attractiveness Analysis By End-User

Chapter 17 Competition Landscape 
   17.1 Digital Agriculture Market: Competitive Dashboard
   17.2 Global Digital Agriculture Market: Market Share Analysis, 2023
   17.3 Company Profiles (Details – Overview, Financials, Developments, Strategy) 
      17.3.1 Deere & Company
Trimble Inc.
AGCO Corporation
Bayer CropScience AG
Corteva Agriscience
Syngenta AG
Topcon Positioning Systems
Raven Industries
Climate LLC (a subsidiary of Bayer)
CNH Industrial N.V.
Kubota Corporation
Yara International ASA
Taranis
Granular, Inc.
Ag Leader Technology
Proagrica (RELX Group)
Iteris, Inc.
PrecisionHawk
Farmers Edge Inc.
Hexagon Agriculture

Methodology

Our Clients

Nestle SA
The John Holland Group
Dassault Aviation
General Electric
sinopec
Microsoft
Siemens Healthcare
General Mills